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We consider the problem of stabilizing the steady-state motion of a non- 
linear control system. A theory of stabilization is developed which is 
analogous to Liapunov stability theory according to the first approxima- 
tion [l-31. The critical cases are isolated, and the critical case of a 
single zero root is examined. 

In the paper we use the following notation. 

The matrices II a ’ II 0 II bij II n etc. 
When niiessary, 

are denoted by capital letters 
A, B, C, . . . we indicate the dimension of the matrix, 
for example, A,“‘, where m is the number of columns and n is the number 
of rows. A square matrix of degree s is denoted by A(‘); matrices and 
vectors are enumerated by a subscript in parenthesis, e.g. A(i) and a ; 

the letter E denotes the unit matrix; 
( 1) 

and the letter 0 denotes the null 
matrix. The matrix obtained from the union of A and B is denoted by 

The symbol r(A) denotes the rank of A; the symbol 1.41 denotes the de- 
terminant of the square matrix A. The spectrum of a matrix [41 is under- 
stood to be the set of its characteristic values together with their 
multiplicities. The notation A E A means that the number A is contained 
in the spectrum of A; the notation A C B means that the columns of A 

are contained in B. BY the symbol {R”) we denote an n-dimensional vector 
space. Lower case latin letters a, b, c, u, x, y. . . . indicate vectors; 
the scalar product of vectors is denoted by the symbol (a x b) = ab; 

a, p, y, A, . . . are scalars; i, j, k, r, II, . . . are indices; IA is the 
modulus of a vector and the absolute value of a numerical quantity; and 
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t is the time. 

1. Formulation of the problem. We consider the control system 

dx/dt = f (t, I, u) (z E {fo, u E {Rrn}) 

where f is a given, sufficiently smooth vector function 

phase vector of the system coordinates. ‘lhe vector u(t, 

(1-l) 

and II is the 

x) is the con- 
trol, which we shall consider as unaffected by disturbances. ‘lhe vector 

x is subject to small perturbations u, so that (1.1) 

5 (t) = x* (t) + u(t) (v E (Jo) (W 

where x*(t) is a given motion generated by the control u* (t, x*(t)) 

according to (1.1). We let 

w=u-uu’ (4.3) 

Substituting (1.2) and (1.3) into (1. l), and expanding the right-hand 

side in terms of the quantities v and w, we obtain an equation for the 

perturbed motion 

where the derivatives are computed along the motion x = x*(t) and u = 

u*(t), and where g(t, V, w) denotes terms which are higher than first 

order in v and w. 

In the case w 5 0, we have the Liapunov [Cl problem for the motion 

t, = 0 of system (1.4). If this motion is unstable for w E 0, then there 

arises the problem of the stabilization of motion (1. l), that is, the 

problem of choosing a control w(t, u) which upon substitution into (1.4) 

will make the nonperturbed motion u = 0 asymptotically stable according 

to Liapunov. The function w(t, u) which solves the stabilization prob- 

lem, we shall call the regulator. If in addition to the requirement of 

asymptotic stability, one adds the condition of minimization of a 

certain functional of u(t) and w(t), then one obtains the problem of 

optimal stabilization or of the analytical construction of regulators 

[5,61. 

We shall assume that w is not of lower order than II, that is 

w (t, 0) = 0 (t a 0) 

IWj (t, U’) - Wj(t9 V”) 1 < P i 1 Vi’ - vi”1 (j = I,..., m; p = const) (1.5) 
iZl 
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for small II’ and II”. 

\!‘e shall also assume that the unperturbed motion v = 0 is stationary, 

that is, the right-hand side of (1.4) does not depend explicitly on t. 

Then system (1.4) takes on the form 

dvldt=Av+Bw+g(v,w) (,4 = const, B = const) (IA) 

Replacing v and w anew by x and u, we consider the system 

dx/dt = Ax $ Bu + g(x, u) (1.7) 

Rscarding the nonlinear terms, we obtain a system of equations for 

the first approximation 

dx/dt = Ax +Bu (1.8) 

The goal of the present paper is to study the conditions under which 

the question of the stabilization of system (1.7) is solved by its 

linear approximation (1.8). Also, we separate out and classify critical 

cases wherein the possibility of the stabilization of (1.7) is deter- 

mined by the terms g(x, u), and we give the solution of the problem in 

the critical case of a single zero root. ln this work we continue the 

investigations of [5-131 . * 

2. Preliminary remarlis. We consider the matrices An” and Bn’ 

with real or complex elements. We form the matrix 

I/’ = 1 13, .4B, . . . , A(“-“B I/ (2.1) 

I,et r(V) = r. Then from V we may separate out r linearly independent 

columns which form a matrix If’,‘. 

Lemma 2.2. There exists a matrix q,‘, and moreover it is unique, 

which satisfies the condition 

Proof. For r = n the verification of the lemma is obvious, since 
Q = (Wn)(-l)AWn. We shall assume that r < n. I)et the columns of 

(2.2) 

. See al so R. E. Kalman, J.C. Ho and K.S. Narendra, “Controllability of 
1 inear dynamical systems”. Contributions to Differential Equations, 
Interscience, Vol. 1, 1962. 
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We shall consider RI square matrices W ? = 
in:(p:. b:L; j:: :. :: h;A’$ j, 11, (1) 

each of which is of rank not higher 
than r. It is known [41, that the first r columns of W(y) will then be 

linearly independent. Making use of this circumstance for r < n, one 

may verify that the columns of the matrices Acne1 B and A(“)B can be 

linearly expressed in terms of the columns of the matrix V* = 

. . . ) Acnw2)B 11. Furthermore, 
II B, AB, 

we have AW’ C AV C 11 B, AV 11 = )I B, AR, 

. . . ) A(“)B I/, and therefore the columns of AW’ are linearly expressible 

in terms of the columns of V*. But since V* C V and the columns of V 

can be expressed in terms of the columns of W’, then the columns of V* 

can also be expressed in terms of W’, and hence the columns of the matrix 

AR” as well. The latter assertion is equivalent to equation (2.2), and 

hence the existence of the matrix Q is proved. 

We now make the contrary assumption that there exist two matrices 

Q(l) and Q(2P satisfying condition (2.2). that is, AW’ = WrQc,), AW’ = 

W’Q( 2) * 

Then Wr(QC1, - Qt2)) = o, and since r( W’) = r = max, then r(Q( 1l - 

~:;;;,=,o* llhat is* Q(1) = Qc2). This proves the uniqueness of the 

To compute the matrix (2, it is necessary to solve the matrix equation 

(2.2), which decomposes into r systems of linear equations 

wt]qjk = pik (pik E AWr; i = 2 ,,,_, n; k = i ,,.,, r) (2.3, 

j=I 

To the matrix W,’ we affix the columns of a certain matrix Cnn-‘, the 

elements of which are obtained only under the condition that the matrix 

D = jl Iv’, c”-’ 11 (2.4’ 

should be nondegenerate, that is In/ f 0. 

Fe consider a similarity transformation 

H = D’-“AD 

Lemma 2.2. ‘Ihe matrix Iii (2.5) has the form 

(2.5) 

(2.61 

where Q,’ is the matrix of equation (2.2)) and the spectrum of the 

matrix A ( 3) is independent of the choice of Cnn-’ in (2.4). 



The stabilization of stationary notions 1525 

Proof. Using (2.2) and (2.4), we carry out a block multiplication In 

(2.5) 

H = D(-‘)&) = )I IV’, C”-’ 11(-l) 11 W’Q,‘, _4Cn-’ I= 

= [I W’, Cn-‘ll(-l) {[I W’Q,‘, 0 II+ 110, AC”- 11) = 

the result of which confirms form (2.6) of the matrix H. 

We rewrite the characteristic polynomial of the matrix H (2.6) 

IH-L!?I= IQ-;lEI.jAc,) - h.E I (2.8) 

The matrix Q in (2.2) Is determined by the matrices A, E and W’, but 

It Is Independent of C”-‘. Hence, the spectrum of Q Is Independent of 

C”-‘. Similarity transformation (2.5) does not change the spectrum of A 

[41, hence from (2.8) we conclude that the union of spectra of Q and 

A(,) Is the spectrum of A, and further that the spectrum of At3) Is ln- 

dependent of C”-‘. (The matrix A(,) may depend on C”-‘.) The lemma Is 

proved. 

Note 2.1. Without loss of generality we may assume In system (1.8) 

r (B) = min (n, m) (2.9 

since in the contrary case the number of equations may be reduced. Let, 

for example, +w < n and r(B) = RI - 1. Then (changing the numbering of the 

columns of B If necessary) we have 

Assuming 

uJ 
* = uj + pjUln (j = I, . . ., m - 1) (2. IO) 

we obtain Bnmu = Bnm-lu*. Hence the last column of the matrix B In (1.8) 

may be removed without any change in system (1.8). In this case, by 

(2. 10) the number of equations is reduced by one. 

Generally speaking, in the nonlinear system (1.7) for r(B) < mln(n,m), 

it is impossible to reduce the number of equations in accordance with 

(2.10) without a change In the stabilizlbllity of the system. However, 

introducing u .* (2. IO) and ulR instead of uj (j = 1, “, . , n) into (1.7). 

we can fulfil i conditions (2.9) for system (1.8) without any actual 

change in the nonlinear system (1.7). In this circumstance, in the 
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noncritical case of stabilization (see below, p.1530) the linear 

regulator a. l is found, 
10 

after which urn may be chosen arbitrarily. In 

the critical cases, the regulator ujo * stabilizes only a certain sub- 

system of the first approximation. The possibility of stabilizing all 

of system (1.7) is then determined by the terms g(x, u), whereby it may 

turn out to be expedient to also choose the components u,,, of the 

regulator on the basis of additional nonlinear relations (see p.1541). 

Note 2.2. If AB = C, then the columns of C can be linearly expressed 

in terms of the columns of A. Hence the columns of Atk)B can be ex- 

pressed in terms of the columns A, and therefore 

r (V) = P (TV’) < r (l/B, AID (2.11) 

and in view of (2.9) the matrix W r for system (1.8) may be chosen in 

the form 

q = 11 P, AG’-m II (2.12) 

which will in fact be assumed below. 

Note 2.3. If in system (1.8) one performs the transformation of vari- 

ables I = Dy, where D agrees witb (2.4), then in the new system dy/dt = 

A y + B U, whereby A = D(-l)AD = H in accordance with (2.5). and by 

virtue Gf (2.4) and i2. 12) 

We form the matr ices 

.V = I/B, AB, . . ., /I’“-“B I/, V, = 11 B,, HB,, . . ., H’“-l’B, I( (2.14) 

In view of (2.5) and (2.13) we obtain 

Jr* zzz p--l)v (2.15,) 

Further, by virtue of (2.6), we. have 

(2.16) 

where PC,) of the specified form is expressed in terms of the matrices 

?, A(,, and AC3). 

NOW from (2.13),, (2.14) and (2.16), it follows that 
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v*=. M:‘m I II 0 n-r 

(2.17) 

where 

If r(V) = r, then by virtue of (2.15) and (2.17), we find that the 

rank of the matrix M (2.18) and the rank of the matrix 

M.+:““=‘IIB**,..., Q(‘-I)&, 11, Bw= o$ 1 II r-m 

(2.19) 

is also equal to r. 

We introduce a definition [71 ( see also the footnote on p.1523). 

Definition 2.1. System (1.1) is said to be completely controlled if 

for arbitrary x0, t,, and xl there exists a certain time tl > t, and a 

certain control u( t, x), which carries the phase (t,, r,,) into the phase 

(t,, x1). ‘Ihe initial phase (t,, x0) is arbitrary; the final phase 

(t,, x1) includes an arbitrary vector nl. In a stronger case, the time 

is also arbitrary. 

The controllability of system (1.8) is tied to the rank of the matrix 

V. This matrix (2.1) was introduced in problems of optimality of con- 

trol in [141 in connection with the condition of the generality of the 

state 1151. 

‘Ihe following assertions are true 16-91. 

1) System (1.8) is completely controllable if, and only if, the 

matrix V defined by (2.1) is of rank n. In this case the final phase 

0,) x1) may be taken arbitrarily. 

2) If the rank of the matrix V is equal to n, then there exists a 

linear regulator u = Px, such that system (1.8) becomes asymptotically 

stable. 

3. Stabilization in terms of the first approximation. In 

system (1.8), according to Section 2, one may construct the matrices 

IV and (z by means of the known matrices A and B and by means of (2.12) 

and (2.13), and thereupon find the spectra of A and Q. By virtue of 

Lemna 2.2, the spectrum Q,’ consists of certain r characteristic values 

of the matrix A. The following theorem is valid. 
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'Theorem 3. f. 1) If the spectrum of the matrix 0 contains all of the 

characteristic values of the matrix A, satisfying the conditions 

Re Api > 0 (i = i,..., 1); Re khk = 0 (k = l,..., m) (Ifma) 

then the unperturbed motion of system (1.7) is stabilized by the linear 

regulator u = Px, independent of the terms g(x, u) . 

2) If the spectrum of the matrix Q contains not even one character- 

istic value h p of the matrix A, for which Re h p, > 0, then the unper- 

turbed motion if system (1.7) is unstable for an’arbitrary choice of the 

control, satisfying (1.5). Hence in this case the stabilization of 

systems (1.7) is impossible, independent of the terms g(x, u). 

3) If the spectrum of the matrix Q contains all of the characteristic 

values of A, for which Re A 
pi 

> 0 (; = 1, . ..) I), but contains not even 

one characteristic value h 
hk 

with Re A 
hk 

= 0, then the possibility of 

the stabilization of system (1.7) is determined by the terms g(x, u) of 

order higher than the first. 

Proof. By means of a non-singular transformation we transform system 

(1.8) 

x=Dp (3.1) 

with the matrix D defined by (2.4). We obtain 

‘5 = HP + Beu (P E WV) (H = D(-‘)a; B, = D(-')B) (3.2) 

In view of (2.6) and (2.13), system (3.2) may be rewritten in the 

form 

(3.4) 

Subsystem (3.4) is completely uncontrollable. We consider the system 

dy=Qy+ Rrn u 
dt /I I 

(Y E {WI 
I---n 

A matrix of form of (2.1) for system (3.5) is equal to M (2.19). In 

view of Note 2.3, the matrix M has the rank r. Therefore (gection 2 

(1)) system (3.5) is completel; controllable. 

Consider part (I) of the theorem. By assumption, the spectrum of the 
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matrix Af3) satisfies the condition Re hr < 0 (j = 1, . . . , n - r) and 
J 

subsystem (3.4) is asymptotically stable. For system (3.5) we have 

r(V) = r(M ) = r, hence by virtue of Section 2 (2) one may find a 

regulator * 

u = Pky (Y E WJ) 

which stabilizes system (3.5). Clearly, this regulator also stabilizes 

the entire system (3.2). In the variables xi regulator (3.6) has the 

form 

u = II p’n, 0-r j/D(-‘)x b E WI) (3.7) 

The characteristic equation of the system 

dx - 7 Ax + B [I Pk, On-+ 11 D(-‘)x 
dt 

has roots only with negative real part. Thus the nonlinear system (1.7) 

for u (3.7) is also asymptotically stable in virtue of the theorem of 

Liapunov [l, p. 1271. This proves Part (1) of the theorem. 

Consider Part (2). By assumption, in the uncontrollable subsystem 

(3.4), there occurs at least one of the values hp. with Re hp, > 0. This 
1 L 

subsystem is unstable, independent of the control,. For an arbitrary 

choice u(x), the system for the first approximation (1.8) will be un- 

stable and will have a trajectory which departs from the point x = 0 

like an exponential for t - m. By virtue of Liapunov’s theorem [l,p. 1281, 

it thus follows that system (1.7) is unstable. 

Note 3.1. The theorem of Liapunov [II was proved for analytic right- 

hand sides of system (1.7), but it retains its force in more general 

cases [2,31 and, in particular, in our case (1.5). where the right-hand 

sides of (1.7) satisfies the Lipschitz condition. 

Consider Part (3). By assumption, in the uncontrollable subsystem 

(3.4) there occur Only Values A,& with Re h,,k < 0, and among these 

values at least one value with Re h,, = 0. System (3.5) may be stabil- 
ized by the regulator u = Py. For an arbitrary specification of the con- 

trol u = py, the characteristic equation of system (1.8) in this case 

will have all roots hi with Re hi< 0 and among these roots at least one 

root Aj with Re hi = 0. Hence in the choice of the control a = Py the 

stability of system (1.7) is determined by the nonlinear terms g(x, II) 

[l-31. This then proves (3) of the theorem. 

Note 3.2. For the solution of the stabilizibility problem, the deter- 

minant of the matrix Q (2.3) is not necessary. By means of the known 
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matrices A and B, one constructs the matrix W’, adds this to the matrix 
D (2.4) with the columns C”-’ and carries out the similarity trans- 

formation (2.5). In this circumstance, one calculates only the submatrix 

A(3) 
and the spectrum of its characteristic values. 

The spectrum of A(3) complements the spectrum of Q with respect to 

the spectrum of the matrix A. Thus follows the criterion of stabiliz- 

ibility corresponding to Parts (1) to (3) of Theorem 3.1 and based on 

the spectrum of A(3). In this case, it is essential that, by virtue of 

Lemma 2.2, the spectrum of A 

Without carrying out details: 3, 

does not depend on the choice of C”-‘. 

we remark only that by this means we 

arrive, in particular, at the assertions of [91, corresponding here to 

Parts (1) and (2) for r(B) = 1. 

Note 3.3. For the concrete specification of a stabilizing control 

u(x) it is not necessary to reduce system (1.8) to the form (3.3) to 

(3.4). If it is known that the condition for the possibility of stabil- 

ization is fulfilled, then for system (1.8) one may immediately search 

for a regulator u(x) which solves the problem [51 for the optimal 

stabilization of system (1.8) in terms of the functional 

J (u) = r o (z, u) dt = r (i aixt+ i cjuj?) dt = min 

i” i” i 1 i’r , 

This problem can be solved if, and only if, 

stabilized (see [5-9,121 ). 
system (1.8) can be 

(3.8) 

It is now expedient to define the following ideas, the introduction 

and study of which comprises the basic goal of the present paper. 

Definition 3.1. ‘Ihe case examined in Part (3) of Theorem 3.1 will be 

called the critical case of stabilization. Let the spectrum of the 

matrix A contain 1 characteristic roots h 
Pi’ 

for which Re.h 
I pi” 

(i = 1, . . . , 11, r zero characteristic roots A 
gk 

= 0 (k f 1, . . . . r), 

q pure imaginary roots Re Ah = 0, Ahk f 0 (k = 1, . . . , q), and s roots 
k > 

h r. with Re h r, < 0 (j = 1, . . . . s). We have then 1 + r + q + s = n. 

I I 

We shall say that there exists the critical case of m zero roots and 

p pure imaginary roots, if the spectrum of the matrix Q contains all 

characteristic roots A 
pi 

with Re Ap, > 0 (i = 1, . . ., I), but does not 

contain exactly m roots A = 0 (k L 1, . ..) m; m< r) and exactly p 

imaginary roots Re Ah = if A 
k 

hk + 0 (k = 1, . . . , P; P <g), whereby 

m> 0, p >O and m + p > 1. ‘Ihis condition is equivalent to the condi- 

tion that the spectrum of the matrix A(,, contain only numbers 
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Re Ar. < 0, m numbers h = 0 (k = 1, *.., n) and p imaginary numbers 

Re A ’ 
hk 

= 0 and Ahk + 0 ;! = 1, . . . . p). 

Note 3.4. If the matrices A and P of system (1.8) are real, then p is 

an even number. This follows from the fact that the matrix D may be 

chosen real, and then the matrices Q and Ac3) will also be real. 

4. The geometric criterion of stabilizibility. Let the 

matrix A be of simple structure, that is, let it have n linearly inde- 

pendent characteristic vectors. We examine system (1.8)) where r(R) = 

m\(n. Let the matrix V (2.1) have the rank r(m < r <n). We take the 
matrix 6 to be of form (2.12). ‘fh e columns of Vv form a subspace (v) 

of {R”}. We denote the characteristic vector corresponding tc the 

characteristic number Aj of the matrix A by the s 

of vectors s Cl) forms a nondegenerate matrix S = 

From the system {s 1 we select the matrix Sner, which together with 

V forms a linearli’!ndependent system of n basis vectors 

K = 11 W’, S”--’ I/ = 11 B”, A G’--“, S”-+ 11 (4.1) 

The nondegenerate linear transformation 

x = Kp 

transforms system (1.8) into the systems 

(4.2) 

dp - = lip + B,u 
dt (4.3) 

H = K(-‘)AK and R* = I((-“R h ave the form of (2.6) and (2.13), re- 

spectively. 

Making use of the property As, j, = Ajs( j,, we compute the matrix H. 
We have, as in (2.7) 

H = K’-l’AK = I)W’, Sn--rll(--l)I)WrQr, AS”-‘l/=/l W’, qi,), . . ., y_,) \\c-~‘, 

where the matrix 9 is computed according 
of S”-’ 

:J,“--__ 
11. - - 0 

0 1. . . . . . . 
(4.4) 

lo.. . A,_ 
I n r 

to (2.3) and is independent 
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1f p-r-m is some matrix which complements )I 'vr, Sm 11 with respect 

to a basis in I.?">, then in a similar way it can be verified that trans- 

formation (4.2) with 

li* = II w’, c”-‘~-‘“, ‘“(1 irn < n - r, S” = [I S(i,), . . ., S(i,) ll) 

transforms the matrix A into the form 

, 

I1 = K * ‘-“AK * = (4.5) 

By virtue of (2.13) and (4.4) system (4.3) takes on the form 

dzi,, 
- = hi,Zi,, 

dt 

YE{R’) 

(k = i,..., n - r) 

(4.6) 

(4.7) 

According to 'keorem 3.1, in order to resolve the question of the 

possibility of stabilizing (1.3), it is necessary to determine just 

how many hik enter into the matrix 

(4.8) 

In order to clarify the geometric picture of the distribution of the 

A. among !, and A 

fJrm the matriceL3 0 Ir 
(4.8), we note some properties of the vectors that 

and S. 

Property 4.1. If th e numbers hi are different, then the matrix S con- 

tains exactly r characteristic vectors s cj,, falling within the space 

{WI. 

Indeed, the space {IF) cannot contain more than r characteristic 

vectors. If it had fewer than r, then by choosing the vector sCi , in 

* = 11 'F, C-'-l, SCik) II 
k 

the matrix K one could change the spectrum of 

the matrix At3) in the construction of (4.5), which would contradict 
Lemma 2.2. 

F+y relying on the linear independence of the vectors s 

?$. 

E S, 

Property 4.1 can also be proved without the use of Lemma 
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In fact, we assume that the matrix S contains only k vectors s 
lying in W, and let these vectors form a matrix Sk, where k < r. 

CiLt 

n-k the remaining vectors s E S (_j = k + 1, . . . , n) form a matrix S 
The spaces {Sk), {Sn-k)(‘) 

. 

and 6 have the following properties: 

A {Sk) c {Sk>, A { hrk} c (Lrk}, A W’) c {W’) 

Since k < r, one can find vectors w e {IT), such that 

j=k+l 

that is, the intersection 

w*> = w-“1 f-l { Jo 

contains the non-null vectors. From the construction, it is clear that 
{W 1 does not contain a single characteristic vector s . of the matrix 
A. *However, we have A{W 1 C {W 1. Hence it follows thii’{W 1 contains 
at least one characteriztic vec&r s . of the matrix A. ‘Ih: contra- 
diction that we have obtained proves(&at k < r is not possible. 

Property 4.2. If there are multiple roots among the numbers h ., then 
by the simple structure of the matrix A, as is known [41, to eat h root 
ho of multiplicity of p. there corresponds exactly p. linearly independ- 
ent characteristic vectors s ’ 

(I 
h (j=l, ***’ of the root A0 in the matrix 

p,). Let the multiplicity 
.rr be equal to k,; O<kO<min(r, p,). 

‘Ihen the linearly independent vectors s( j,o (j = 1, . . . , p,) may be 
chosen such that exactly k, of them fall within (6). 

Indeed, let pi be the multiplicity of Ai in the matrix A and ki be 
the multiplicity of Ai in the matrix Q, and let the vectors s( i .) 

(j = 1, . . * ) pi), corresponding to the characteristic value Ai Le 
chosen in some way. ‘lhe matrix 

has the rank 

In fact, if 

r (K(t)) = r + pi - ki 

r (K(t)) = r + mi > r + pi - ki 

(4.10) 

then transformation (4.2) with K * = 11 W’, CnBrmni, Smi 11 would carry 
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the matrix A into form (4.5)) where the mu1 tiplicity of hi in A, 3) would 

be equal to mi > pi - ki. This is not possible because in the proof of 

Lemma 2.2 the equality mi = pi - kL was established. ‘thus 

r (K(i)) < r + pi - ki (4.11) 

for all Ai., If the inequality in (4.11) were strict in at least one case, 

then (4.11) would imply that F( 11 w’, S’ 11) < II. Therefore the equality 

of equation (4.10) holds. But (4.10) means that for the numbers A0 one 

may find new characteristic vectors 

(a{j=const; i, j=1,.. .,pO) (4.12) 

such that exactly k, of these vectors fall within the space {v>. 

Hence in the case of multiple roots hj, the simple structure of the 

matrix A allows one to choose characteristic vectors s( i) such that the 

matrix s will contain exactly F vectors falling within the space {v). 

Property 4.3. If A and R are real, the complex conjugate vectors both 

fall simultaneously into the space {VI. In fact, in this case the 

matrices V and V will be real, and hence if the vector s (]) E {IV}, 
then its conjugate vector scjJ belongs to {r). 

Using Properties 4.1, 4.2 and 4.3, we may determine hi E: At3). To 

do this, we find the matrix S of characteristic vectors of A and deter- 

mine the columns s(: ,), which enter into expression (4.1) for the matrix 

K. Namely, from the ‘matrices 

(k = gjthe multiplicity of hj) (4.13) 

we isolate the submatrices of maximum rank Fj (F < rj < F + qj), Con- 

taining V. The columns SC j ,) which occur in them enter into expression 

(4.1) of the matrix K. ‘l%e ‘corresponding numbers Ai, of multiplicity 

‘j - ” 
enter into the matrix Ac3). 

‘Ihere will be exactly n - F of such vectors s cj ,). In the case of 

real A and R it is sufficient to check one of the ‘two complex conjugate 

characteristic vectors. 

We now formulate the geometric criterion of stabilizibility. 

We denote the characteristic vectors, corresponding to the character- 

istic numbers 

ne&,>O (i = 1, . . ., l), Rehhk = 0 (j=l....,m) 

Rehrj<O (k=I,...,q) 
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by the symbols 

s(i)') s(k)', s(j)- (l+m+q=nj 

Theorem 4.1. 
. . . . 2) and sCkjo 

1) If all of the characteristic vectors s( i ’ (i = 1, 

(k = 1, . . . . m) belong to the space {VI, t h en the un- 

perturbed motion of system (1.7) is stabilized by the regulator u = Px, 

independent of the terms g(n, u). 

2) If at least one of the characteristic vectors sti)+ does not be- 

long to the space {VI, then the stabilization of system (1.7) is not 

possible. 

3) If all of the characteristic vectors s( i)t (i = 1, . . ., 1) belong 

to the space {VI, but at least one of the vectors s( k) ’ is not con- 

tained in {V), then the possibility of the stabilization of system 

(1.7) is determined by the term g(x, u). 

The validity of Theorem 4.1 follows from Theorem 3.1 in accordance 

with the Properties 4.1, 4.2, 4.3, Iesrna 2.2 and construction (4.4) of 

the matrix A, 3) (4.8) by means of transformation (4.4). 

By the same means, from Theorem 4.1 there results the following 

assertion, which we formulate under the assumption that all of the 

numbers hi are different. 

c .oroZlary 4.2. 1) If there exist n - r characteristic vectors sfj)-, 

not contained in the space { F”) then the unperturbed motion of system , 
(1.7) is stabilized by the regulator u = Px, independent of g(x, u). 

2) If in the union of vectors s 0 
( 1 ' '(j) 
f 

- there exist less than 

n - r vectors, not contained in {lt’r , then the stabilization of system 

(1.7) is not possible. 

3) If conditions (1) are not fulfilled, but there exist in the union 

of the vectors .sCk) O and s -, n - r vectors not contained in the space 

{IV), then the possibility(A) the stabilization of (1.7) depends on the 

terms g(x, u) . 

Note 4.1. The case of multiple roots hi when the matrix A is of 

simple structure differs from that considered in Corollary 4.1 in that 

the vectors s (j,) (k = 1, ...* qj), corresponding to the root Aj of 

multiplicity pi in conditions (1) to (3), must be checked not indi- 

vidually, but rather the calculations in terms of the entire group, and 

must be carried out as many times as the vectors s 
(jk) 

enter into the 

submatrix in (4.13) containing W’ and having maximum rank. 

In accordance with Jkfinition 3.1 we now give a geometric 
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classification of the critical cases of stabilization. 

We retain the notation .s(~) * (k = 1 , . . . ) m) for the characteristic 

vectors corresponding to the zero roots hh = 0, and introduce the nota- 

tion s(h)0 (II = 1, , . . , f) for the vectorskcorresponding to pure imagin- 

ary roots Re A, = 0 and A, # 0. The notations s(i)+ (i = 1, . . *, 1) and 

S(j)_ (j = 1, . ..) q) remain as before; 2 + m + 7 + f = n. 

From Theorem 4.1 it follows that the critical case of stabilization 

occurs when and only when all of the vectors s ( ijt belong to {IT), but 

at least one of the characteristic vectors s * and s are not con- 

tained in {V>. 
(k) (h,* 

In this circumstance there occurs the critical case of k zero roots 

and p pure imaginary roots in all s( iIt E {!V), while in the union of 

in vectors s(jI * (i=l, ..*, m) there exist exactly k vectors s 
(jI* 

entering into the submatrix from (4.13) containing R and having the 

maximum rank r* = 

(h=l, . . . . 

r + k, and while in the union f of the vectors s(h)’ 

f) there exist exactly p vectors s(,,~* entering into the 

submatrix from (4.13) containing IV and having the maximum rank r* = r +p. 

Note 4.2. If the matrices A and B in (1.8) are real, then p is an 

even number. 

Now let the matrix ‘4 have complex structure. Then it is already im- 

possible to give a geometric picture of the conditions of stabilizibility 

by relying only on the characteristic vectors A. In the general case we 

consider the matrix 7’ = I\ T, 1I, . . , , T,,, 11, transforming the matrix A 

to Jordan form G, that is 

G _ T’-“A-T - (4.14) 

Let the matrix A have 1 characteristic roots with Re hp. > 0, m roots 

with Re h = 0 
hk 

and q roots with Re h 
r 

< 0. We shall say ‘that the 

column T(sI of the matrix T correspond; to the root hS, if As stands at 

the s row of the main diagonal of G. The vectors T(sI, corresponding to 

the roots Re h p > 0, Re h, = 0 and Re A 
k 

r 
< 0, we shall denote by the 

s+ds T(i)+, +(k)O and 7’ -, 
(I) 

respective y. i 

We may now obtain a geometric criterion of stabilizibility by means 

Of T(s)* To do this, it is sufficient in theorem 4.1 to replace .s(~)+’ 

‘(k) ’ and s (j)- by ‘pi,+, T(k)o and T(j)-. 

For the proof of the validity of the criterion that has been obtained 

in this manner it is necessary to examine transformation (4.2), where 
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K = /I W’, T"-' ;; (4.15) 

where T’-’ is a matrix of the columns TfS ,) E T (i = 1, . . . , n - r), 

which together with W forms a basis in {An>. In this case the spectrum 

Of %, in (2.6) will consist of the numbers A 
s1’ ***’ AS * In fact 

the solution {y(t), z(t)) of the transformed system 
n-r 

dy 
- = Qy + A$, 
dt 

2 = 43, 2, (4.16) 

with the initial conditions y(0) = 0, ~~(0) = 0, i f sj and zS .(O) = 1 

corresponds to the solutions x(t) of system (1.8) with the initial con- 

ditions r(O) = T, ,. 

However, this iolution x(t) has the form [2,31 

x (t) = P (t) easjt (4.17) 

where P(t) is a vector polynomial. ‘Iherefore the solution z(t) of the 

system 

(4.18) 

with the initial conditions z;(O) = 0 (i # sj), zS I(O) = 1 has the form 

2 (t) = Qsj (t) eAsit 
where Q, ,( t) is a vector polynomial since {y(t), z(t)) = K-lx(t). Hence 

I 
it follows that the fundamental matrix Z(t) of the solution of system 

(4.18) has the form 

2 (t) = 11 Qts,) (t) eAsi , . . . , Q(sn_r) (4 eAs”-‘l jl 

which is in accordance with the known theory for the construction of 

solutions of a linear system E2,31, and proves our assertion concerning 

the spectrum of A, 3). 

‘Ihe further proof of the criterion repeats the proof of Theorem 2.1. 

Therefore the following assertion is valid. 

77~eorem 4.2. ?he critical case of the stabilizibility of system (1.7) 
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occlirs if, and only if, all oi the vectors T tIj+ belong to {IV), while 
at least one of the vectors T ckJo does not belong to (IV}. 

Note 4.3. When A has simple structure the vectors TtiJ coincide with 

the characteristic vectors stij of the matrix A r41. 

5. The critical case of a single zero root. ’ Let the right- 

hand side of (1.9) be an analytic function in the neighborhood of the 

point x = 0. Tn accordance with J)efinition 3.1 we assume that the 

spectrum of the matrix !, (2.2) includes all of the characteristics roots 

hi of the matrix A with Re Ai> 0, but does not include exactly one zero 

characteristic root ho = 0 of it. 

In accordance with Section 4 this case occurs when all of the vectors 

'(i) 
t 

and s Chjo of the simple matrix A are contained in the subspace 

{II R, AR, . ..) A'n-l)R It), but exactly one vector s 

contained in this subspace. 

(kjo (k = 1) is not 
For multiple roots or for A of complex 

structure the case of a single zero root occurs only when the matrix 

11 w', T(,,', . . . . TCmJo 11, contains all of the 7'(,,' (k = 1, . . . . m), 
corresponding to the root ho = 0 of multiplicity m, has rank r t 1, and 

all of the vectors T, Lj+ and T 

An, ,..~ A("-')I: )I). 

fhjo are contained in the s&space {)I R, 

Subsystem (3.4) in this case has a single linear integral r1-31 
lz = const and I - Cl,, . . . . In_,) = const, to which there corresponds 
the linear integral 

E = I/ OlrL,“-’ lp-” 2 = (0, . . .( 0, I,, . , .) z+,) Ll(--1) z= co& 

(Ll---r = I) (5.2) 

of system (1.8), whatever the control u(x) 

Taking the quantity < as a new variable and assuming ni = vi (i = 1, 

. . . ) n - l), we reduce the nonliriear system (1.7) to the form 

dE 
- = x (5, L’, u) dt (EEUW, GWrnl) (5.2: 

dv 
-=A*v+B*u+c~+Y(E, v,u) (VEW?) 
dt 

(5.3; 

FIere < is a scalar, u is an (n - 1) vector, A is an (n - 1) x (n-l) 

mqtrix, I: is an (n - 1) x m matrix, c is an (n*- 1) vector, and X and 

Y are vec*tors containing terms higher than first order in <, v and u. 

It may be verified that the system 

dz,/dt = A,v + B,u (5.4 
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satisfies condition (1) of ‘lheorem 3.1. Therefore, it may be stabilized 

by a control of type (3.6). Let the reqJator found for (5.4) have the 

f9rm 

u*(v) = P,n-lv (5.5) 

Fc*r system (5.2) to (5,3j we shall seek a regulator of the form 

k=l 

(i=i,..., m) (5.6) 

For PkJ = 0 the regulator that is obtained is analytic. Generally 

speaking, the introduction of nonanalytic components extends the 

possibility of stabilization (see, for example, p.1544). 

In accordance with the method of Liapunov [l-31 we consider the 

:;y.5t,Pnl 

rg (& 1 Cl, v) =: A,v + B,u + cg + I (E, v, u) = 0 (5.7) 

Lvhere u = u (<, \<I, V) in accordance with (5.5) and (5.6). 

I-lfter the substitution of (5.6) into (5.2) to (5.3), system (5.4) 

takes on -i-he form 

Since U*(U) will be a regulator for (5.4), then 

la i 

-I 1 
-!?-_ 
auj i=u=o 

-L /A, + B,Pl+O 6% 

Hence in a sufficiently small neighborhood of the origin v = 0 and 

< Z 0 thcrc rxist.s a unicpre solution of system (5.7) which can be re- 

presented by series 

vi0 = $ &,kijS 1 E lk (i=i,..., n-i) (5.10) 
e-tk=l 

in which the coefficients n skf of the specified form are expressed in 
terms of the coefficients asI and phj. 

‘Ihe function x(<, u, u) on the right-hand side of (5.2) has the form 

x (E, v, u) = 2 
k+l+p=Z 1=1 j=l 

(5.11) 
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Substituting (5.5), (5.6) and (5.10) into (5.11), we obtain the 
series 

C,kES 1 E Ik cc&( = Csk (a,j. Pkj)) (5.12) 
s+k=Z 

Series (5.12) is the right-hand side of equation (5.2), which is ob- 

tained after a Liapunov transformation 

Vi = Wi $- Vi' 

if one sets mi E 0. 

(i=l,.... n-l) (5.13) 

Substitution (5.13) transforms system (5.2) to (5.3) to new variables 

< and w. In view of the choice of control (5.6), the transformed system 

may have discontinuities on the right-hand sides on the plane 5 = 0. 

However, it may be verified that this does not invalidate the arguments 

that have been introduced here in accordance with the scheme of Liapunov 

El1 . 

in (5.11) we introduce the notation bkooij = b,. If the union of 

terms of the lowest dimension in (5.11) 

k + 1 + p = miri (5.14) 

has the form bkck, then: 

1) for k even or for k odd, but b, > 0, the motion of system (5.2) to 

(5.3), and hence that of (1.7) as well, cannot be stabilized by re&alator 

(5.6). 

2) for k off, b, < 0, the motion of system (1.7) is stabilized by the 

regulator u*(u) (5.5). 

'Ihis follows inrnediately from the known theory of the critical case 

of a single zero root [l-31. 

Likewise, if the terms (5.14) in (5.11) conLain the variables vi and 

'j' 
then in the union of terms of lowest dimension 

s-/-k=1 (1 = 2, 3, . .) (5.15) 

either series (5.12) will contain a function of E, which does not depend 

on the coefficients asI and pkj (this case is similar to that considered 

in the previous section), or it will contain a function of c which de- 

pends on aSj or pkj. In the latter case we shall apply the following 

procedure. 
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!‘/e denote the sum of coefficients over all odd functions in the 

union of terms (5.12) satisfying (5.15) by h,* = hl*(asJ, PkJ), and we 

shall denote the analogous sum over even functions by h, = h,(asj, Pkj). 

Then the stabilization by control (5.6) is assured, if the coeffi- 

cients asJ and pkJ in (5.6) can be chosen such that the terms of lowest 

dimension satisfy the conditions hp* < - lhpl, where p = min Z>2. 

In this circumstance it is sufficient to assume in (5.6) 

u’(v) = .*j (v) + c.tjE + pj 1 E 1 

In the singular case X({, u, u) E 0 the stabilization of system (5.2) 

to (5.3) by regulator (5.6) is not possible, however for u = u,(u) (5.5) 

the unperturbed motion (5.2) to (5.3) will be stable according to 

Li apunov, and every perturbed motion sufficiently close to the unper- 

turbed motion will asymptotically approach a certain stationary motion 

< = cz and vi = 0. 

If it is not possible to satisfy the condition h * < - lh 1, then it 

is at least necessary to satisfy the weakened condikon h * g - ih I. 
After this it is necessary to examine in (5.12) the unionPof termsP 

following in order of dimension. The remaining coefficients osj and pkj 

must be arranged in such a way that this union satisfies one of the con- 

di tions 

or at least one of the conditions 

‘Ihe regulator will be constructed if in this process there occurs a 

point where after a certain step 1 > p there is fulfilled the relation 

h* < - I h 1 (5.16) 

or the relation 

h&J < 0, h* < 1 h I (5.17) 

wherein the quantities hi* and hi satisfy, for p < i \(l - 1, the con- 

di tions 

hi,&>09 him * = -Ihi,/, p<i,<l-1 

hi,,& < 0, hi,* = I bin /, p-t-l\<i,<l--1 (5.181 

(m=1...., r; n=l,..., q; r+q=l-p) 
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If as a result of constraints, or the structure of system (5.2) to 

(5.3), it turns out for arbitrary possible values aSJ and pkJ that for 

certain 1 >p and for conditions (5.18) for p\< i <l - 1 the relation 

is fulfilled or that the relation 

is fulfilled, then stabilization by the method indicated does not go 

through. 

'lhe validity of these assertions follows from the criteria of sta- 

bility for nonanalytic systems in the critical case of a single zero 

root 1161. 

An analytic regulator is obtained from (5.6) for pkJ = 0. Tt is 

necessary to find a regulator of the form 

(5.21) 

In this case series (5.12) will have the form 

We denote by cS* the first of the coefficients in series (5.32) which 

differs from zero. 

Then stabilization is possible [I-XI if by a suitable choice of aSJ 
one may fulfill the condition 

ccl* < 0 (s is odd) (5.1.1, 

Tf as a result of constraints or the structure of system (5.3) to 

(S.3) it is not possible to satisfy condition (5.23) and cS* f 0 for s 

even, or c * > 0 for s odd, then system (1.7) is not stabilized by 

regulator 15.21). 

Note 5.1). It was assumed above that the matrix I?J~"_~ in (5.4) satis- 

fied condition (2.6): r(B ) = n = max. If this is not the case, then we 

make a change in control i2.10). Then the dimension of the regulator 

II (v) (5.5) will be equal to the rank of r(R ). Since the dimension of 

tie nonlinear regulator u (5.6) is equal to i, the vector u (v) should 

be enlarged by m - r(B ) components, which may be chosen as*arbitrary 
l 
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analytic functions of the vector u. 

Let us consider an example based on an example from the book [2, 

p. 1381. 

Example. We have given the system 

dx 
- = axa + bzy Tp ey’, 

dt 
!$f= y + kx _P 1x2 + mxy $-ny2 + u 

where a, b, c, k, 1, m and n are constants and X, y and u are scalars. 

For u E 0 the system is unstable. The linear approximation has the form 

dx - 
dt 

= 0, dx=y+kx+u 
dt 

We have the matrices 

A= “ky ) B=UY I(, v=,,.,ABIl=-/I~;II, r(V)=1<2 II II 
In the uncontrollable 

A, = 0. For the equation 

form u = - 2y. 
l 

subsystem dx,ldt = 0 we have the zero root 

dy/dt = y + u the regulator may be taken in the 

1) Solution in the subclass (5.21) of analytical regulators. We look 

for a regulator of the form (5.21) 

System (5.7) has the form 

- y + kx -f 1x2 -f mxy + ny2 f a,x’ = 0 

s--l 

y (ZJ = B,x + Bzx2 _t B3xa -f . . . 

where 

B, = k + al, Ba = 1 +- mk -f nk” f ma, -f- Znka, -f- nq2 + aa = LIZ0 -j- a2 

B, = (m + 2nk $ 2na,) B, j- a3 = B,O -,- a3 

We have 

X0 = ax2 -$ bxy + cy2 = A2x2 + A,xS + ~14~4 -f . . , 

where 

!2 = a + bk + ba, + c (k + aJ2, A, = (b + 2cBJ (Bi” -J- az) 

A, = cB,~ -j; (b + 2cBJ (B30 + a3) 

The parameter a, is chosen by the condition A2 = 0. If this is not 
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possible (for example for h = c = 0 and (I f 0) , then stabilization is 

not possible. Let us assume that by the choice of al we have A2 = 0. If 

in this circumstance b + 2cR, y 0, then aq is chosen by means of the 

condition A3 < 0; if for an arbitrary possible a2 we have A3 > 0, then 

stabilization is impossible. If b + 2cB1 = 0, then .4, = 0; and cxg is a 

spare parameter which may be disposed of subsequently. 

Let b + 2cRl = 0 and A, = 0. Then a*, a3 and a4 are chosen by means 

of the condition A, = 0, A5 < 0. etc. Having found the first suitable 

as (s = 1, . . . . so), we assume the remaining as +,, (n = 1, 2, . . .) and 

the regulator is found. 0 

2) Solution in the class of regulators of form (5.6). We look for a 

regulator of the form 

u=us~az9~Iz~=-2y6az6~~zI 

We have system (5.7) 

--y-+ kxf, lzx+mxy+nya+ax-@~ \zl=O 

Y (2, 1% I) = &z + &*I = I-9 * * * (B, = k + a, BP = @) 

We have 

X0 = US + bxy $ q2 = A,x2 & Aa*x 1 x 1 f . . ., 

where 

Al -z a + bB, f- cB? + cBI*~ = a -f+ b (k -& a) Q c (k _sC cd2 + cfi’ 

Aa* = bBl* + 2cB1B1* = Lb + 2c [k + a)1 j3 

We choose a and p such that the condition Aq l < - tAp\ is fulfilled, 

that is 

lb C 2c (k -I- a)1 p < - I a -k b (k + a) -k c (k C 4’ -I- 4’ 1 

If it is possible to do this, then the regulator is found. For ex- 

ample, let a, b, c > 0 and b2 - 4ac > 0. Then the stabilizing control 

will be a regulator in which u = - k and P2 > p > pl, where p1 and p2 

are roots of the equation cp2 + bp + a = 0. If for an arbitrary possible 

choice of a and p we have A2 l ’ - /A21, then stabilization by means of 

regulator (5.6) is not possible. 

If it is possible to find such a and p so that at least AZ+ =- [AZ/, 

then it is necessary to consider terms of the next higher dimension, 

choosing a in the general form (5.6). 
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